Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
mBio ; 15(4): e0045424, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38497655

ABSTRACT

Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE: Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.


Subject(s)
Salmonella typhi , Salmonella , Typhoid Fever , Humans , Animals , Mice , Salmonella typhi/genetics , Typhoid Fever/microbiology , NF-kappa B , Macrophages/microbiology
2.
Leukemia ; 38(5): 951-962, 2024 May.
Article in English | MEDLINE | ID: mdl-38553571

ABSTRACT

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Subject(s)
Adaptor Proteins, Signal Transducing , LIM Domain Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Thymus Gland/metabolism , Thymus Gland/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
3.
Clin Cancer Res ; 30(2): 420-435, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37611074

ABSTRACT

PURPOSE: Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. We evaluated whether CDK4/6 inhibitor (CDKi) abemaciclib can sensitize intracranial tumors to programmed cell death protein 1 (PD-1) inhibition in mouse models of melanoma and breast cancer brain metastasis. EXPERIMENTAL DESIGN: Treatment response was evaluated in vivo using immunocompetent mouse models of brain metastasis bearing concurrent intracranial and extracranial tumors. Treatment effect on intracranial and extracranial tumor-immune microenvironments (TIME) was evaluated using immunofluorescence, multiplex immunoassays, high-parameter flow cytometry, and T-cell receptor profiling. Mice with humanized immune systems were evaluated using flow cytometry to study the effect of CDKi on human T-cell development. RESULTS: We found that combining abemaciclib with PD-1 inhibition reduced tumor burden and improved overall survival in mice. The TIME, which differed on the basis of anatomic location of tumors, was altered with CDKi and PD-1 inhibition in an organ-specific manner. Combination abemaciclib and anti-PD-1 treatment increased recruitment and expansion of CD8+ effector T-cell subsets, depleted CD4+ regulatory T (Treg) cells, and reduced levels of immunosuppressive cytokines in intracranial tumors. In immunodeficient mice engrafted with human immune systems, abemaciclib treatment supported development and maintenance of CD8+ T cells and depleted Treg cells. CONCLUSIONS: Our results highlight the distinct properties of intracranial and extracranial tumors and support clinical investigation of combination CDK4/6 and PD-1 inhibition in patients with brain metastases. See related commentary by Margolin, p. 257.


Subject(s)
Brain Neoplasms , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Brain Neoplasms/pathology , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , CD8-Positive T-Lymphocytes , Tumor Microenvironment , Cyclin-Dependent Kinase 4/metabolism
4.
Cell Rep ; 42(11): 113347, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37910503

ABSTRACT

Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.


Subject(s)
Antineoplastic Agents , Transient Receptor Potential Channels , Calcium Channels/metabolism , Integrin alpha6 , TRPC6 Cation Channel , Calcium/metabolism , TRPC Cation Channels/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014123

ABSTRACT

Background: Facioscapulohumeral muscular dystrophy (FSHD) disease progression is associated with muscle inflammation, although its role in FSHD muscle pathology is unknown. Methods: We have developed a novel humanized mouse strain, NSG-SGM3-W41, that supports the co- engraftment of human hematopoietic stem cells (HSCs) and muscle myoblasts as an experimental model to investigate the role of innate immunity in FSHD muscle pathology. Results: The NSG-SGM3-W41 mouse supports the selective expansion of human innate immune cell lineages following engraftment of human HSCs and the co-engraftment and differentiation of patient-derived FSHD or control muscle myoblasts. Immunohistological and NanoString RNA expression assays establish that muscle xenografts from three FSHD subjects were immunogenic compared to those from unaffected first-degree relatives. FSHD muscle xenografts preferentially accumulated human macrophages and B cells and expressed early complement genes of the classical and alternative pathways including complement factor C3 protein, which is a mediator of early complement function through opsonization to mark damaged cells for macrophage engulfment. FSHD muscle xenografts also underwent immune donor dependent muscle turnover as assayed by human spectrin ß1 immunostaining of muscle fibers and by NanoString RNA expression assays of muscle differentiation genes. Conclusions: The NSG-SGM3-W41 mouse provides an experimental model to investigate the role of innate immunity and complement in FSHD muscle pathology and to develop FSHD therapeutics targeting DUX4 and the innate immunity inflammatory responses.

6.
Dev Cell ; 58(18): 1801-1818.e15, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37751684

ABSTRACT

Approaches to study human pharyngeal foregut endoderm-a developmental intermediate that is linked to various human syndromes involving pharynx development and organogenesis of tissues such as thymus, parathyroid, and thyroid-have been hampered by scarcity of tissue access and cellular models. We present an efficient stepwise differentiation method to generate human pharyngeal foregut endoderm from pluripotent stem cells. We determine dose and temporal requirements of signaling pathway engagement for optimized differentiation and characterize the differentiation products on cellular and integrated molecular level. We present a computational classification tool, "CellMatch," and transcriptomic classification of differentiation products on an integrated mouse scRNA-seq developmental roadmap confirms cellular maturation. Integrated transcriptomic and chromatin analyses infer differentiation stage-specific gene regulatory networks. Our work provides the method and integrated multiomic resource for the investigation of disease-relevant loci and gene regulatory networks and their role in developmental defects affecting the pharyngeal endoderm and its derivatives.


Subject(s)
Pharynx , Pluripotent Stem Cells , Humans , Animals , Mice , Endoderm/metabolism , Digestive System , Cell Differentiation/genetics , Gene Expression Regulation, Developmental
7.
Nat Cancer ; 4(8): 1122-1137, 2023 08.
Article in English | MEDLINE | ID: mdl-37474835

ABSTRACT

γδ T cells are important tissue-resident, innate T cells that are critical for tissue homeostasis. γδ cells are associated with positive prognosis in most tumors; however, little is known about their heterogeneity in human cancers. Here, we phenotyped innate and adaptive cells in human colorectal (CRC) and endometrial cancer. We found striking differences in γδ subsets and function in tumors compared to normal tissue, and in the γδ subsets present in tumor types. In CRC, an amphiregulin (AREG)-producing subset emerges, while endometrial cancer is infiltrated by cytotoxic cells. In humanized CRC models, tumors induced this AREG phenotype in Vδ1 cells after adoptive transfer. To exploit the beneficial roles of γδ cells for cell therapy, we developed an expansion method that enhanced cytotoxic function and boosted metabolic flexibility, while eliminating AREG production, achieving greater tumor infiltration and tumor clearance. This method has broad applications in cellular therapy as an 'off-the-shelf' treatment option.


Subject(s)
Endometrial Neoplasms , Intraepithelial Lymphocytes , Humans , Female , Receptors, Antigen, T-Cell, gamma-delta/genetics , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Intraepithelial Lymphocytes/metabolism , Adoptive Transfer , Endometrial Neoplasms/therapy
8.
Sci Adv ; 9(24): eade9488, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37327334

ABSTRACT

Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices.


Subject(s)
Biocompatible Materials , Foreign Bodies , Humans , Animals , Mice , Foreign-Body Reaction/etiology , Disease Models, Animal , Cytokines , Fibrosis
9.
Lab Anim (NY) ; 52(7): 149-168, 2023 07.
Article in English | MEDLINE | ID: mdl-37386161

ABSTRACT

Humanized mouse models, created via transplantation of human hematopoietic tissues into immune-deficient mice, support a number of research applications, including transplantation immunology, virology and oncology studies. As an alternative to the bone marrow, liver, thymus humanized mouse, which uses fetal tissues for generating a chimeric human immune system, the NeoThy humanized mouse uses nonfetal tissue sources. Specifically, the NeoThy model incorporates hematopoietic stem and progenitor cells from umbilical cord blood (UCB) as well as thymus tissue that is typically discarded as medical waste during neonatal cardiac surgeries. Compared with fetal thymus tissue, the abundant quantity of neonatal thymus tissue offers the opportunity to prepare over 1,000 NeoThy mice from an individual thymus donor. Here we describe a protocol for processing of the neonatal tissues (thymus and UCB) and hematopoietic stem and progenitor cell separation, human leukocyte antigen typing and matching of allogenic thymus and UCB tissues, creation of NeoThy mice, assessment of human immune cell reconstitution and all experimental steps from planning and design to data analysis. This entire protocol takes a total of ~19 h to complete, with steps broken up into multiple sessions of 4 h or less that can be paused and completed over multiple days. The protocol can be completed, after practice, by individuals with intermediate laboratory and animal handling skills, enabling researchers to make effective use of this promising in vivo model of human immune function.


Subject(s)
Immune System , Thymus Gland , Humans , Animals , Mice , Disease Models, Animal , Liver , Research Personnel
10.
EMBO J ; 42(16): e114153, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37382276

ABSTRACT

Innate lymphoid cells (ILCs) are a diverse population of cells that include NK cells and contribute to tissue homeostasis and repair, inflammation, and provide protection from infection. The interplay between human blood ILCs, as well as their responses to HIV-1 infection, remains poorly understood. This study used transcriptional and chromatin profiling to explore these questions. Transcriptional profiling and flow cytometry analysis support that there are four main ILC subsets found in human blood. Unlike in mice, human NK cells expressed the tissue repair protein amphiregulin (AREG). AREG production was induced by TCF7/WNT, IL-2, and IL-15, and inhibited by TGFB1, a cytokine increased in people living with HIV-1. In HIV-1 infection, the percentage of AREG+ NK cells correlated positively with the numbers of ILCs and CD4+ T cells but negatively with the concentration of inflammatory cytokine IL-6. NK-cell knockout of the TGFB1-stimulated WNT antagonist RUNX3 increased AREG production. Antiviral gene expression was increased in all ILC subsets from HIV-1 viremic people, and anti-inflammatory gene MYDGF was increased in an NK-cell subset from HIV-1-infected people whose viral load was undetectable in the absence of antiretroviral therapy. The percentage of defective NK cells in people living with HIV-1 correlated inversely with ILC percentage and CD4+ T-cell counts. CD4+ T cells and their production of IL-2 prevented the loss of NK-cell function by activating mTOR. These studies clarify how ILC subsets are interrelated and provide insight into how HIV-1 infection disrupts NK cells, including an uncharacterized homeostatic function in NK cells.


Subject(s)
HIV Infections , HIV-1 , Humans , Mice , Animals , Immunity, Innate , Lymphocytes/metabolism , HIV-1/metabolism , Interleukin-2/metabolism , Chromatin , Killer Cells, Natural , Cytokines , HIV Infections/genetics
11.
Sci Transl Med ; 15(694): eade5855, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134151

ABSTRACT

Prostate cancers are largely unresponsive to immune checkpoint inhibitors (ICIs), and there is strong evidence that programmed death-ligand 1 (PD-L1) expression itself must be inhibited to activate antitumor immunity. Here, we report that neuropilin-2 (NRP2), which functions as a vascular endothelial growth factor (VEGF) receptor on tumor cells, is an attractive target to activate antitumor immunity in prostate cancer because VEGF-NRP2 signaling sustains PD-L1 expression. NRP2 depletion increased T cell activation in vitro. In a syngeneic model of prostate cancer that is resistant to ICI, inhibition of the binding of VEGF to NRP2 using a mouse-specific anti-NRP2 monoclonal antibody (mAb) resulted in necrosis and tumor regression compared with both an anti-PD-L1 mAb and control immunoglobulin G. This therapy also decreased tumor PD-L1 expression and increased immune cell infiltration. We observed that the NRP2, VEGFA, and VEGFC genes are amplified in metastatic castration-resistant and neuroendocrine prostate cancer. We also found that individuals with NRP2High PD-L1High metastatic tumors had lower androgen receptor expression and higher neuroendocrine prostate cancer scores than other individuals with prostate cancer. In organoids derived from patients with neuroendocrine prostate cancer, therapeutic inhibition of VEGF binding to NRP2 using a high-affinity humanized mAb suitable for clinical use also diminished PD-L1 expression and caused a substantial increase in immune-mediated tumor cell killing, consistent with the animal studies. These findings provide justification for the initiation of clinical trials using this function-blocking NRP2 mAb in prostate cancer, especially for patients with aggressive disease.


Subject(s)
Prostatic Neoplasms , Vascular Endothelial Growth Factor A , Male , Animals , Humans , Vascular Endothelial Growth Factor A/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Signal Transduction , B7-H1 Antigen/genetics , Prostatic Neoplasms/metabolism
12.
FASEB J ; 37(6): e22995, 2023 06.
Article in English | MEDLINE | ID: mdl-37219526

ABSTRACT

Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.


Subject(s)
Leukocytes, Mononuclear , T-Lymphocytes , Humans , Animals , Mice , Mice, Inbred NOD , Treatment Outcome , Cytokine Release Syndrome , Cytokines , Disease Models, Animal , Mice, Knockout , Mice, SCID
13.
Life Sci Alliance ; 6(5)2023 05.
Article in English | MEDLINE | ID: mdl-36878637

ABSTRACT

Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Animals , Mice , Burkitt Lymphoma/drug therapy , Burkitt Lymphoma/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Rituximab/pharmacology , Rituximab/therapeutic use , Herpesvirus 4, Human/genetics , Cell Line, Tumor , Disease Models, Animal
14.
J Leukoc Biol ; 113(5): 418-433, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36801998

ABSTRACT

Agents that induce inflammation have been used since the 18th century for the treatment of cancer. The inflammation induced by agents such as Toll-like receptor agonists is thought to stimulate tumor-specific immunity in patients and augment control of tumor burden. While NOD-scid IL2rγnull mice lack murine adaptive immunity (T cells and B cells), these mice maintain a residual murine innate immune system that responds to Toll-like receptor agonists. Here we describe a novel NOD-scid IL2rγnull mouse lacking murine TLR4 that fails to respond to lipopolysaccharide. NSG-Tlr4null mice support human immune system engraftment and enable the study of human-specific responses to TLR4 agonists in the absence of the confounding effects of a murine response. Our data demonstrate that specific stimulation of TLR4 activates human innate immune systems and delays the growth kinetics of a human patient-derived xenograft melanoma tumor.


Subject(s)
Severe Combined Immunodeficiency , Toll-Like Receptor 4 , Animals , Humans , Mice , Immunity, Innate , Inflammation , Mice, Inbred NOD , Mice, SCID , Toll-Like Receptor 4/genetics
15.
Nat Immunol ; 24(4): 652-663, 2023 04.
Article in English | MEDLINE | ID: mdl-36807641

ABSTRACT

Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 ß56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 ß56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Mice , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class II , Insulin/metabolism , Mice, Inbred NOD
16.
Nat Rev Clin Oncol ; 20(3): 192-206, 2023 03.
Article in English | MEDLINE | ID: mdl-36635480

ABSTRACT

Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.


Subject(s)
Neoplasms , Animals , Mice , Humans , Neoplasms/therapy , Disease Models, Animal , Immunotherapy , Biomarkers , Immune System
17.
Commun Biol ; 5(1): 1226, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369358

ABSTRACT

Mast cells (MC) are key drivers of allergic and inflammatory diseases. Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 is an immunoregulatory receptor found on MCs. While it is recognized that engaging Siglecs with antibodies mediates inhibition across immune cells, the mechanisms that govern this agonism are not understood. Here we generated Siglec-6 mAb clones (AK01 to AK18) to better understand Siglec-6-mediated agonism. Siglec-6 mAbs displayed epitope-dependent receptor internalization and inhibitory activity. We identified a Siglec-6 mAb (AK04) that required Fc-mediated interaction for receptor internalization and induced inhibition and antibody-dependent cellular phagocytosis against MCs. AK04-mediated MC inhibition required Siglec-6 immunoreceptor tyrosine-based inhibitory motif (ITIM) and ITIM-like domains and was associated with receptor cluster formation containing inhibitory phosphatases. Treatment of humanized mice with AK04 inhibited systemic anaphylaxis with a single dose and reduced MCs with chronic dosing. Our findings suggest Siglec-6 activity is epitope dependent and highlight an agonistic Siglec-6 mAb as a potential therapeutic approach in allergic disease.


Subject(s)
Antigens, CD , Mast Cells , Humans , Mice , Animals , Antigens, CD/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins , Antibodies, Monoclonal/pharmacology , Epitopes
18.
FASEB J ; 36(9): e22476, 2022 09.
Article in English | MEDLINE | ID: mdl-35959876

ABSTRACT

Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.


Subject(s)
Immunity, Innate , Interleukin-15 , Animals , Disease Models, Animal , Humans , Interleukin Receptor Common gamma Subunit/genetics , Interleukin-15/genetics , Killer Cells, Natural , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID
19.
Methods Mol Biol ; 2427: 215-234, 2022.
Article in English | MEDLINE | ID: mdl-35619037

ABSTRACT

Efforts to understand molecular mechanisms of pathogenesis of the human-restricted pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever, have been hampered by the lack of a tractable small animal model. This obstacle has been surmounted by a humanized mouse model in which genetically modified mice are engrafted with purified CD34+ stem cells from human umbilical cord blood, designated CD34+ Hu-NSG (formerly hu-SRC-SCID) mice. We have shown that these mice develop a lethal systemic infection with S. Typhi that is dependent on the presence of engrafted human hematopoietic cells. Immunological and pathological features of human typhoid are recapitulated in this model, which has been successfully employed for the identification of bacterial genetic determinants of S. Typhi virulence. Here we describe the methods used to infect CD34+ Hu-NSG mice with S. Typhi in humanized mice and to construct and analyze a transposon-directed insertion site sequencing S. Typhi library, and provide general considerations for the use of humanized mice for the study of a human-restricted pathogen.


Subject(s)
Salmonella typhi , Typhoid Fever , Animals , Disease Models, Animal , Mice , Mice, SCID , Salmonella typhi/genetics , Typhoid Fever/microbiology , Typhoid Fever/pathology , Virulence/genetics
20.
Mol Ther ; 30(3): 1329-1342, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34774753

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a severe liver disorder characterized by triglyceride accumulation, severe inflammation, and fibrosis. With the recent increase in prevalence, NASH is now the leading cause of liver transplant, with no approved therapeutics available. Although the exact molecular mechanism of NASH progression is not well understood, a widely held hypothesis is that fat accumulation is the primary driver of the disease. Therefore, diacylglycerol O-acyltransferase 2 (DGAT2), a key enzyme in triglyceride synthesis, has been explored as a NASH target. RNAi-based therapeutics is revolutionizing the treatment of liver diseases, with recent chemical advances supporting long-term gene silencing with single subcutaneous administration. Here, we identified a hyper-functional, fully chemically stabilized GalNAc-conjugated small interfering RNA (siRNA) targeting DGAT2 (Dgat2-1473) that, upon injection, elicits up to 3 months of DGAT2 silencing (>80%-90%, p < 0.0001) in wild-type and NSG-PiZ "humanized" mice. Using an obesity-driven mouse model of NASH (ob/ob-GAN), Dgat2-1473 administration prevents and reverses triglyceride accumulation (>85%, p < 0.0001) without increased accumulation of diglycerides, resulting in significant improvement of the fatty liver phenotype. However, surprisingly, the reduction in liver fat did not translate into a similar impact on inflammation and fibrosis. Thus, while Dgat2-1473 is a practical, long-lasting silencing agent for potential therapeutic attenuation of liver steatosis, combinatorial targeting of a second pathway may be necessary for therapeutic efficacy against NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Disease Models, Animal , Fibrosis , Inflammation/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/therapy , Obesity/genetics , Obesity/therapy , RNAi Therapeutics , Triglycerides/metabolism , Triglycerides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...